Cold fusion reactor heats room in Sapporo Japan

Author Ruby Carat at coldfusionnow.org

A new report from Sapporo Japan claims increased excess heat from a Nickel Reactor. 

Tadahiko Mizuno

Modifications to the cold fusion energy reactor designed by Tadahiko Mizuno have dramatically increased excess heat production. The thermal power output of the cell is now able to exceed the air-flow calorimeter’s heat removal capacity of 1 kilowatt.

This is reported in the paper Increased Excess Heat from Palladium Deposited on Nickel [.pdf]. Co-author Jed Rothwell will describe the spectacular results at the 22nd International Conference on Condensed Matter Nuclear Science ICCF-22 this September 2019 in Assisi, Italy.

 When the input is 300 Watts heat, thermal power output is estimated to be between 1 – 3 kilowatts. This is based on the fact that Prof. Mizuno heated his room in Sapporo last winter with the cold fusion reactor, and he felt the room’s temperature to be as warm as when using a 3-kilowatt electric heater.

Tadahiko Mizuno’s R20 reactor heats a room in Sapporo

Tadahiko Mizuno’s R20 reactor heats a room in Sapporo. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

 

The jump in power occurred after he placed the heater that regulates the reaction at a new location inside of the cell, as well as new and different applications of pressure to the reactor.

But he also changed the way he made the active cathode material.

 

Physically Rubbing a Nickel Mesh with Palladium

 Previously, to produce active nickel-mesh cathodes Prof. Mizuno, lead researcher at Hydrogen Engineering Application & Development HEAD, had been using glow discharge to “erode the center of the palladium electrode and sputter palladium on the nickel mesh”. This method could reliably generate 232 Watts excess heat with 248 Watts input, but it took months of applying the discharge to complete an active cathode. He needed a new method of applying palladium to the nickel-mesh.

Old Glow Discharge Fusion Reactor

Old cruciform design used glow discharge to prepare the cathode for a reaction. Excess heat was reliable, but the whole process took months. Graphic from Excess Heat from Palladium Deposited on Nickel.

Electroless deposition gave good results, but the chemical solution was expensive. So, Prof. Mizuno started physical rubbing a palladium rod on the nickel-mesh to save money.

Three separate nickel mesh pieces are prepared by rubbing “vigorously” with a palladium rod. A careful WARNING is included: the procedure should take place in a glove box or appropriate facility as the fine particles of nickel dust are toxic and pose a health danger. Only those “skilled in the art” should attempt reproduction.

 

Nickel Mesh for Cold Fusion Reactor

Using a glove box for safety, a palladium rod is rubbed one way, and then, 90 degrees the other way until 15-20 milligrams of palladium is deposited. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

The three mesh is carefully weighed during rubbing until 15-20 milligrams of palladium is deposited on each mesh. Then, the three mesh are stacked and rolled up. Inserted into the steel cylindrical reactor, they are unrolled inside, and spring-out against the cylinder walls.

 

Three palladium-rubbed nickel mesh against the interior walls of the reactor. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

This new method of cathode preparation is faster than a glow discharge, however, first attempts to activate the mesh saw excess power results dropping to 12 Watts, about 12% excess heat, a marginal result.

 

Self Regulating Heat Reactor 

Then, in this last year, Prof. Mizuno changed the design. A sheath heater was installed inside the center of the cylindrical reactor R20.

Sheath heater now sits symmetrically in the center of the cylinder of the R20 design, heating the unit internally. Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

That design change, along with “changes in the methods and pressures”, has “apparently enhanced the reaction, producing the results shown in Fig. 6.”

The R20 power results raw (in gray), and adjusted for heat loss through the walls of the calorimeter (in orange). Graphic from Increased Excess Heat from Palladium Deposited on Nickel.

Jed Rothwell was surprised at the result of moving the heater. He says, “I might have moved it inside just to reduce overall input power, but I had no idea that might increase output.”

Observations on this system have led to some important conclusions.

“First, the excess heat should be an exponential function of absolute temperature,” says Mizuno. “Second, the deuterium concentration in nickel affects the amount of excess heat. Third, the influence of deuterium pressure is small. Also, excessive heat generation requires treatment of the nickel surface. Also, there is a need for dissimilar metal layers. That’s all.”

The R20 is described as the “latest and most effective reactor”. After two hours of operation, it provides a stable ~250 Watts thermal excess power output when the input is a 50 Watt heater, and power generation can continue indefinitely.

However, an input of 300 Watts thermal will produce heat overwhelming the lab’s air-flow calorimeter heat removal capacity. There is an effort to test the R20 reactor in a bigger calorimeter in time to report definitive power output levels at ICCF-22 in September.

Air-flow calorimeter withstands scrutiny

The airflow calorimetry Prof. Mizuno used to measure the heat from the R20 has not changed since the report last year. Calorimeter specifications are described in detail in the previous paper Excess Heat from Palladium Deposited on Nickel [.pdf], which was presented at the ICCF-21 conference. Jed Rothwell, who has worked with Mizuno for over 30 years, invited the CMNS community to help find weak spots, and he has investigated every critique. So far, the calorimetry appears tight.

“Jed’s contribution is huge,” says Prof. Mizuno. “He looked at and analyzed my experimental results in detail, and gave me appropriate advice. He also corrected my dissertation, corrected my analysis errors and corrected sentences. I think Jed is a collaborator.”

Tadahiko Mizuno has shared specific details of these successful experiments in his papers and he is encouraging those “skilled in the art” – and with the proper equipment and protection from toxic nickel dust – to replicate the results. He promises to help replicators, too.

Jed Rothwell has heard from several people planning or starting replications. “Some of them seem to be trying new approaches,” he says. “I am following Dennis Cravens and one other person very closely. I think they are sticking to the protocol, except that one of the reactors is considerably smaller, so the mesh is only 2″ wide. I hope that has no effect on the results. We’ll see.”

To Read the Full article click here: Cold Fusion Now Tadahiko Mizuno


Leave a comment

Please note, comments must be approved before they are published

  • Customer Support
    Customer Support

    Message us for help

  • Reward Points
    Reward Points

    Sign up and Save

  • Affiliate Program
    Affiliate Program

    Share and Earn Cash

  • Open Source
    Open Source

    Support our Fusion R & D

Thank you for signing up!
Loading
The cookie settings on this website are set to 'allow all cookies' to give you the very best experience. Please click Accept Cookies to continue to use the site.